Substituent Effects in the Hydrolysis of Ouinoline-Boranes

David E. Minter, Curtis R. Kelly, and Henry C. Kelly*

Received February 12, 1986

Rates of hydrolysis of quinoline-boranes (QB) in aqueous dioxane are dramatically influenced by substitution in both the hetero and all-carbon ring systems. Effects of 3-, 4-, and 6-substituents appear to be due to electronic induction. Rates obtained at 25 °C with 3- and 4-substituted quinoline-boranes correlate with Hammett σ_m and σ_p parameters for both acid-independent and acid-catalyzed pathways, which are depicted respectively by k_1 and k_2 in the expression $-d[QB]/dt = [QB](k_1 + k_2[H^+])$. Results are consistent with previously proposed mechanisms involving, for the first-order process, dissociative loss of BH₃ and, for the acid-catalyzed reaction, electrophilic displacement of BH₃ via cis attack of hydrogen ion at nitrogen. Methyl substitution at C-2 enhances k_1 presumably through a steric effect and k_2 through an inductive effect. A significant steric effect of the peri hydrogen at C-8 is suggested through a comparison of kinetic parameters for substituted quinoline-boranes with those of isoquinoline-borane, wherein k_1 may be observed to change by over 4 orders of magnitude. Such substituent effects are significant in the projected synthetic use of heteroaromatic amine-boranes in protic media.

Introduction

Substituted guinoline-boranes are utilized in the preparation of tetrahydroquinolines, which are employed in the synthesis of natural products and also used in studies of mechanisms of selected reactions.¹⁻³ As expected, the reactivities of quinoline-boranes and corresponding tetrahydroborate derivatives are influenced by the nature and position of substituent groups in both the hetero and all-carbon ring systems. Since many such transformations are studied in protic media, the influence of ring substitution on the hydrolytic kinetic stability of quinoline-boranes is of particular relevance. The present study was undertaken to elucidate such effects and is an extension of investigations of effects of B- and N-substitution on the kinetics and mechanism of hydrolysis and hydride oxidation in amine-boranes.4-16

Experimental Section

Materials. Quinoline and isoquinoline were obtained from Matheson Coleman and Bell, 3-methyl- and 6-nitroquinoline were obtained from Lancaster Syntheses Ltd., 8-methylquinoline was obtained from K and K Laboratories, and other substituted quinolines were obtained from Aldrich. Tetrahydrofuran (THF), obtained from Fisher or Mallinckrodt, was doubly distilled, once from CaH2 and subsequently from sodium and benzophenone. A 1 M solution of tetrahydrofuran-borane (THF-BH₃) in THF was obtained from Aldrich. 1,4-Dioxane, obtained from Mallinckrodt, was boiled under reflux with HCl (20 mL of concentrated HCl/L of dioxane) for about 2 h. The solution was then refluxed for several hours over KOH pellets (60 g of KOH/L of dioxane) and, on cooling, was decanted from KOH and refluxed and distilled from LiAlH₄ solution. Analytical reagent grade KIO3 was obtained from Mallinckrodt or MCB, KI from Mallinckrodt, Fisher, or Kodak, and Vitex starch from G. Frederick Smith Co. Solutions 0.02 N in Na₂S₂O₃ were prepared by using reagent grade $Na_2S_2O_3$ ·5H₂O (Mallinckrodt) or by dilution of 0.1

Minter, D. E.; Stotter, P. L. J. Org. Chem. 1981, 46, 3965-3970.

- (2) Brooks, D. J.; Dowell, D. S.; Minter, D. E.; Villarreal, M. C. J. Org. Chem. 1984, 49, 130-133.
- (3) Blackburn, B. K.; Frysinger, J. F.; Minter, D. E. Tetrahedron Lett. 1984, 25, 4913-4916.
- (4) Hawthorne, M. F.; Lewis, E. S. J. Am. Chem. Soc. 1958, 80, 4296 - 4299
- Lewis, E. S.; Grinstein, R. H. J. Am. Chem. Soc. 1962, 84, 1158-1161.
- (8) Kelly, H. C.; Marchelli, F. R.; Giusto, M. B. Inorg. Chem. 1964, 3,
- (9) Kelly, H. C.; Underwood, J. A., III. Inorg. Chem. 1969, 8, 1202–1204.
 (10) Lowe, J. R.; Uppal, S. S.; Weidig, C.; Kelly, H. C. Inorg. Chem. 1970,
- , 1423-1427 Weidig, C.; Uppal, S. S.; Kelly, H. C. Inorg. Chem. 1974, 13, 1763-1768. (11)
- Weidig, C.; Lakovits, J. M.; Kelly, H. C. Inorg. Chem. 1976, 15, (12)1783-1786.
- (13)
- (14)
- Killern, K. R.; Kelly, H. C. Inorg. Chem. 1977, 16, 3000-3005.
 Kelly, H. C.; Marriott, V. B. Inorg. Chem. 1979, 18, 2875-2878.
 Wilson, I.; Kelly, H. C. Inorg. Chem. 1982, 21, 1622-1627.
 Kelly, H. C.; Yasui, S. C.; Twiss-Brooks, A. B. Inorg. Chem. 1984, 23, 2220 2220. (16)2220-2223.

N Acculute solutions obtained from Anachemia Chemicals Ltd., and subsequently standardized against 0.05 N KIO₃.

Preparation of Amine-Boranes. Amine-boranes derived from quinoline, 3-methylquinoline, 4-methylquinoline, 6-methylquinoline, 6-methoxyquinoline, and isoquinoline were each synthesized according to a general procedure exemplified below for the preparation of 6-methylquinoline-N-borane. The remaining examples were not sufficiently stable to survive the aqueous workup and/or purification by recrystallization. These were synthesized by modifying the procedure to use a minimum amount of solvent thus allowing (ideally) the amine-borane to crystallize directly from the reaction mixture at low temperature. Addition of a slight molar excess of neat 2-methylquinoline to 1 M BH₃·THF in THF, according to the description below, produced a crude product, which was spectrally pure by NMR. Application of the method to 8-methylquinoline gave a free-flowing granular white solid with a sharp melting point, which nevertheless contained 12 mol % of occluded free amine. The NMR spectrum of crude 3-bromoquinoline-N-borane prepared similarly indicated a trace amount of an unidentified impurity containing aliphatic hydrogens. In all cases, the ¹¹B NMR spectrum showed only one boron absorption (quartet).

The preparations of 4-chloro- and 6-nitroquinoline-N-borane involved the addition of slightly less than 1 molar equiv of 1 M BH₃·THF in THF to a saturated solution of the solid amine in THF at 0 °C. The inverse mode of addition was necessary in the latter case to avoid reduction of the nitro group. These amine-boranes failed to precipitate at -78 °C and were isolated simply by removing the solvent in vacuo. Virtually pure 4-chloroquinoline-N-borane was obtained by recrystallization of the crude product from isopropyl alcohol but with substantial loss of material. Crude 6-nitroquinoline-N-borane, containing 40 mol % of the corresponding free base, was used directly without complication since all hydrolysis reactions were carried out under pseudo-first-order conditions. Again, only one boron-containing compound was present in these mixtures.

See Tables I-III for physical, analytical, and spectral information. All NMR data were recorded by using a Varian XL-300 spectrometer operating at 299.94 MHz for ¹H, 75.43 MHz for ¹³C, and 96.23 MHz for ¹¹B.

Preparation of 6-Methylquinoline-N-Borane. To a magnetically stirred solution of 1.61 g (11.2 mmol) of 6-methylquinoline in 50 mL of anhydrous THF under N2 atmosphere at -78 °C was added 12.0 mL of 1.0 M BH₃-THF complex in THF (12.0 mmol) via syringe. After 30 min at -78 °C, the entire reaction mixture was poured into a separatory funnel containing 50 mL of water. The product was removed by extraction with CH_2Cl_2 (1 × 55 mL and 1 × 10 mL), and the combined organic extracts were dried over Na₂SO₄. Rotary evaporation of the solvent yielded a solid, which was recrystallized from approximately 40 mL of isopropyl alcohol to give 1.38 g (79%) of pure 6-methylquinoline-N-borane, mp 105.0-106.5 °C

Preparation of 2-Methylquinoline-N-Borane. Freshly distilled 2methylquinoline (2.30 g, 16.0 mmol) was added dropwise via syringe to 15.0 mL (15.0 mmol) of 1.0 M BH3 THF complex in THF (stirred magnetically) under N₂ at 0 °C. The milky suspension was cooled to -78°C and rapidly vacuum-filtered through a medium frit under N₂. The filtrate was washed with 5 mL of cold ether and dried under vacuum (0.1 mm, 25 °C, 2 h). The crude white amorphous product (1.71 g, 72%; mp 133.0-134.0 °C) was spectrally pure by NMR analysis.

Kinetic Experiments. All aqueous dioxane solutions were prepared with calibrated pipets and are reported as % by volume. Each hydrolysis

Table I.	Physical an	d Analytical	Data for	Amine-Boranes
----------	-------------	--------------	----------	---------------

				¹¹ B NMR, ^b ppm
amine	mp, °C	% yield ^a	anal.	(J _{BH} , Hz)
quinoline	84.0-85.0	78	calcd: 75.59% C, 7.05% H	-13.78 (96.4)
			found: 75.44% C, 6.96% H	
2-methylquinoline	133.0-134.0	72 (crude)	calcd: 76.49% C, 7.70% H	-18.49 (97.7)
			found: 75.98% C, 7.86% H	
3-methylquinoline	114.0-116.0	38	calcd: 76.49% C, 7.70% H	-13.86 (95.2)
			found: 76.89% C, 7.66% H	
4-methylquinoline	118.5-120.0	49	calcd: 76.49% C, 7.70% H	-13.95 (94.3)
			found: 76.49% C, 7.63% H	
6-methylquinoline	105.0-106.5	79	calcd: 76.49% C, 7.70% H	-13.87 (96.4)
			found: 76.43% C, 7.66% H	
8-methylquinoline	77.0-78.5	70 (crude)	88 mol % N-borane	-8.81 (100.1)
			12 mol % 8-methylquinoline	
3-bromoquinoline	100 dec	75 (crude)	>92% pure by integration	-13.06 (95.2)
			(internal standard)	
4-chloroquinoline	65 dec	38 (100 crude)	>96% pure by integration	-13.60 (95.2)
			(internal standard)	
6-methoxyquinoline	139.0-141.0	83	calcd: 69.42% C, 6.99% H	-13.82 (90.3)
			found: 69.22% C, 6.93% H	
6-nitroquinoline	140 dec	100 (crude)	60 mol % N-borane	-13.12 (95.6)
			40 mol % 6-nitroquinoline	
isoquinoline	62.0-63.0	81	calcd: 75.59% C, 7.05% H	-12.39 (95.2)
			found: 75.47% C, 7.23% H	

^aRecrystallized unless otherwise indicated. ^bRelative to BF₃·Et₂O.

Table II. Proton Chemical Shifts (ppm vs. Me₄Si) of Amine-Boranes in CDCl₃ (10% w/v)^a

					position				
amine	1	2	3	4	5	6	7	8	CH ₃
quinoline		9.11	7.50	8.42	7.91	7.68	7.88	8.92	
2-methylquinoline			7.38	8.17	7.78	7.57	7.78	9.18	2.99
3-methylquinoline		8.95		8.15	7.80	7.63	7.79	8.84	2.50
4-methylquinoline		8.92	7.30		8.01	7.67	7.83	8.90	2.76
6-methylquinoline		9.00	7.44	8.29	7.63		7.67	8.77	2.54
8-methylquinoline		9.21	7.37	8.30	7.69	7.47	7.64		3.29
3-bromoquinoline		9.21		8.57	7.86	7.74	7.91	8.89	
4-chloroquinoline		9.05	7.63		8.29	7.80	7.96	8.96	
6-methoxyquinoline		8.89	7.41	8.26	7.10		7.47	8.79	3.94
6-nitroquinoline		9.37	7.78	8.71	8.91		8.65	9.19	
isoquinoline	9.26		8.36	7.82	7.93	7.88	7.75	8.02	

^a protons attached to boron appeared as an extremely broad quartet in all cases between 2.1 and 3.6 ppm.

Table III. Carbon Chemical Shifts (ppm vs. Me₄Si) of Amine-Boranes in CDCl₃ (10% w/v)

	position										
amine	1	2	3	4	5	6	7	8	9	10	CH3
quinoline		150.44	120.68	141.26	128.33	128.25	132.08	124.71	142.76	128.82	
2-methylquinoline		160.78	124.27	139.77	128.20	126.98	131.49	125.09	143.96	127.40	26.62
3-methylquinoline		152.05	130.63	139.89	127.61	128.15	130.93	124.42	141.13	128.72	18.58
4-methylquinoline		149.78	121.50	150.81	124.30	127.84	131.45	125.25	142.28	128.48	19.29
6-methylquinoline		149.43	120.60	140.48	127.00	138.53	134.26	124.32	141.31	128.94	21.35
8-methylquinoline		153.58	119.76	142.14	127.50	127.61	136.37	135.32	144.38	130.85	26.20
3-bromoquinoline		151.61	114.84	142.38	127.49	129.35	132.37	124.98	141.33	129.46	
4-chloroquinoline		149.92	121.10	143.44	124.71	129.22	132.92	125.54	147.57	126.94	
6-methoxyquinoline		147.77	121.01	139.71	105.39	158.67	124.67	126.13	138.70	130.38	55.76
6-nitroquinoline		153.59	122.94	142.94	124.47	146.45	125.30	127.45	144.80	128.01	
isoquinoline	150.41		139.53	122.93	126.57	133.44	129.35	128.49	127.94	135.61	

study was started by dissolving a weighed sample of amine-borane in about 100 mL of a specified aqueous dioxane solution contained in a thermostated Sargent or Freas Precision constant-temperature bath. For the 3-bromo and 8-methyl derivatives, an improved solubilization procedure involved dissolving the amine-borane in a prescribed volume of dioxane followed by the addition of a measured volume of H₂O. The temperature of the hydrolysate was maintained to ±0.05 °C.

Measurement of the rate of reaction was based upon determination of unreacted amine-borane according to a previously reported iodometric determination of soluble hydride.^{8,17} Ten-milliliter portions of hydrolysate were periodically withdrawn and added to solutions containing known amounts of KIO₃. Hydrolysis was quenched by the addition of about 1 g KI followed by 5 mL of 6 N H₂SO₄. In each case, the KIO₃ was sufficient to generate I₂ in excess of that required to oxidized unreacted hydride according to $H^- + I_2 \rightarrow 2I^- + H^+$. For hydrolysates containing HCl, I_2 generation occurred immediately upon addition of KI. Residual I_2 was measured by titration with 0.02 N Na₂S₂O₃ using Vitrex starch indicator. Amine-borane concentrations were calculated from a knowledge of the hydride content obtained from a calculation of the consumed I_2 .

Results and Discussion

Amine-borane hydrolysis involves aqueous oxidation of hydridic (boron-bonded) hydrogen and is accompanied by formation of free amine and borate equilibrated between respective acidic and basic forms. Consistent with previous studies on alkyl, aryl and selected heterocyclic amine-boranes,⁸ the hydrolysis of substituted quinoline-boranes (QB) proceeds via two pathways as depicted in (1). A study of the rate in the absence of added acid allows

$$-d[QB]/dt = [QB](k_1 + k_2[H^+])$$
(1)

⁽¹⁷⁾ Lyttle, D. A.; Jensen, E. H.; Struck, W. A. Anal. Chem. 1952, 24, 1843-1844.

Figure 1. Correlation of hydrolysis rates with the Hammett equation, $\log (k/k_0) = \rho \sigma$: (•) $\log k_1$; (•) $\log k_2$. Data for 3- and 4-substituted quinoline-boranes are plotted vs. respective σ_m and σ_p parameters. σ values: p-CH₃, -0.17; m-CH₃, -0.07; H, 0.00; p-Cl, 0.23; m-Br, 0.39. For k_1 , $\rho = 3.41$ (cc = 0.991); for k_2 , $\rho = -2.67$ (cc = 0.994).

Table IV. Hydrolysis Rates of Substituted Quinoline-Boranes (QB) and Isoquinoline-Borane (IsQB) in 50% Aqueous Dioxane at 25 °C

substrate	$10^5 k_1,^a s^{-1}$	$10^4 k_2,^a M^{-1} s^{-1}$
QB	0.54	2.6
2-MeQB	18.4	6.3
3-MeQB	0.49	3.1
4-MeQB	0.28	7.4
6-MeQB	0.36	4.0
6-MeOQB	0.44	2.9
3-BrQB	19.2	
4-CIQB	5.1	
6-O ₂ NOB	9.1	
8-MeQB	700	
IsQB	0.046	15.6

"From eq 1.

direct determination of k_1 , whereas k_2 is readily obtained from the slope of the line derived from the hydrogen ion dependence of the pseudo-first-order rate constant for a series of studies conducted in the presence of known excess hydrogen ion concentrations.

The effects of substituents in the 3- and 4-positions of the heterocyclic ring system parallel effects observed on substitution in meta and para positions of the aromatic ring in the hydrolysis of aniline-boranes in aqueous dioxane in that, relative to (unsubstituted) quinoline-borane, electron-withdrawing groups enhance the k_1 term whereas electron-releasing groups enhance k_2 (Table IV).⁸ In Figure 1, such rates are shown correlated with Hammett σ parameters¹⁸ for five derivatives for the first-order reaction and four derivatives for the acid-dependent pathway. Here σ_m and σ_p values are plotted against rate data obtained for the respective 3- and 4-substituted quinoline-boranes.

Such effects are consistent with previously proposed mechanisms of amine-borane hydrolysis^{6-9,14} (summarized in Scheme I), in which the acid-independent pathway is presumed to involve rate-limiting loss of BH₃ via dissociative activation, with the k_2 term reflecting bimolecular electrophilic displacement of BH₃ through cis attack of solvated hydrogen ion at nitrogen,⁹ perhaps at the electron density of the B-N bond. Evidence for general-acid catalysis of the latter process has been previously presented.⁸ In each process, rapid hydrolysis of solvated BH₃ has been proposed, with no implication as to the lifetime of a solvated borane or even its existence as a kinetically significant intermediate. ElectronScheme I

Table V.	Effect of Solvent Composition on the Acid-Independent
Hydrolysi	is of Quinoline-Borane and Derivatives at 25 °C

	vol %			
substrate	$dioxane/H_2O$	$10^{5}k_{1},^{a} s^{-1}$	Y ^b	m^b
QB	40/60	0.42	1.95	
	50/50	0.54	1.36	
	67/33	0.83	0.245	-0.19
	75/25	1.14	-0.373	
2-MeQB	40/60	14.3	1.95	
	50/50	18.4	1.36	
	60/40	24.0	0.715	-0.18
	70/30	31.8	0.013	
6-MeOQB	40/60	0.32	1.95	
	50/50	0.44	1.36	
	67/33	0.66	0.245	-0.20
	75/25	0.97	-0.373	
3-BrQB	40/60	15.9	1.95	
	50/50	19.2	1.36	
	60/40	25.1	0.715	-0.17
	67/33	33	0.245	
	75/25	44	-0.373	

^a From eq 1. ^b log $(k/k_0) = mY.^{20}$

Table VI. Temperature Dependence of k_1 for Quinoline-Borane and 6-Methoxyquinoline-Borane in 50% Aqueous Dioxane

	10	$10^{5}k_{1}, s^{-1}$		
<i>t</i> , °C	QB	6-MeOQB		
25.0	0.54	0.44		
34.9	1.97	1.61		
43.6	5.64	4.68		
53.2	16.6			
53.5		15.1		

withdrawing substituents are expected to enhance a transition-state configuration involving development of increased electron density at nitrogen whereas electron-releasing groups expectedly favor the development of positive charge in the incipient quinolinium ion.

A dissociative pathway for the first-order reaction is also supported by rate studies in solvents varying in dioxane-water content (Table V). As in previously reported investigations with *p*-toluidine-borane,⁸ a linear correlation of log k_1 with Grunwald-Winstein Y values,^{20,21} produces a negative slope suggesting a transition-state configuration involving dissipation of the B-N dipole of the amine-borane. Whether the process should be regarded as purely dissociative (D), or a dissociative interchange (I_d) reaction²² is uncertain in the absence of evidence as to the role of water in the activated complex.

The temperature dependence of k_1 for quinoline-borane and the 6-methoxy derivative (Table VI) yields activation parameters $\Delta H^* = 96.8 \text{ kJ mol}^{-1}$ and $\Delta S^* = -21.7 \text{ J deg}^{-1} \text{ mol}^{-1}$ and ΔH^* = 98.7 kJ mol⁻¹ and $\Delta S^* = -16.7 \text{ J deg}^{-1} \text{ mol}^{-1}$, respectively. It

⁽¹⁸⁾ Hammett, L. P. Physical Organic Chemistry; McGraw-Hill: New York, 1940.

⁽¹⁹⁾ The k₂ term for the 3-bromo derivative was not well-defined due to the relative insensitivity of the rate to added hydrogen ion up to 0.4 M H⁺. Higher acid concentrations result in a superimposition on the rate of additional medium effects, including ionic strength effects.

⁽²⁰⁾ Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846-854. (21) Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic Reactions;

Wiley: New York, 1963; Chapter 8. (22) Langford, C. H.; Gray, H. B. Ligand Substitution Processes; Benjamin,

⁽²²⁾ Langtord, C. H.; Gray, H. B. Ligand Substitution Processes; Benjamin, New York, 1965.

is possible that the negative entropy term is the result of a positive entropy contribution accompanying a dissociative process being offset by a solvation requirement for the incipient BH₃ group and free amine in the transition state.

Previous applications of the Hammett equation to reactions of quinoline derivatives have included a study of variations of reactivity, with position, of side-chain acid and ester functions.²³ Its application here must be considered with caution inasmuch as this linear free-energy relationship is designed for correlation of rates and equilibria of reactions occurring at aryl side chains. Nevertheless, a correlation of kinetic data for 3- and 4-substituted quinoline-boranes is probably not surprising if one considers the primary reaction site to be the electron pair of the B-N bond, and although quinoline-borane hydrolysis is quite sensitive to electronic inductive effects of hetero ring substituents ($\rho = 3.4$ for the acid-independent contribution), there appears to be no imposition of electronic demand that would necessitate the use of modified substituent constants beyond those σ values which are defined on the basis of benzoic acid dissociation.^{18,20,24-27}

The effect of the 2-methyl group in producing an approximate 30-fold increase in k_1 , relative to unsubstituted quinoline-borane, is attributed to steric enhancement of a dissociative pathway involving a change in the coordination number of nitrogen from four in the amine-borane to three in the incipient free amine. Interestingly, 2-methyl substitution also causes a greater than 2-fold *increase* in k_2 , presumably reflecting the greater importance of the electronic inductive effect of the methyl group over its

capacity to hinder approach of solvated proton to the coordination sphere of nitrogen. A small effect on k_1 and k_2 is also observed on introduction of methyl or methoxy in the 6-position, suggesting some transmission of electronic induction from this region of the all-carbon ring. The nearly 20-fold increase in k_1 resulting from insertion of a nitro group at this position is consistent with previous reports of the exceptional effect of the NO₂ function in reactions subject to acceleration by electron-withdrawing substituents, particularly where there is direct conjugation of the nitro group with the reaction site.27

It is also interesting to compare kinetic parameters of quinoline-borane and its derivatives with those of isoquinoline-borane. Relative values of k_1 and k_2 suggest, for the quinoline-boranes, a steric influence of the peri hydrogen at C-8, resulting in enhancement of the dissociative pathway and, to a lesser degree, retardation of bimolecular substitution relative to what is exhibited by the isoquinoline derivative. Such an influence is further suggested by the magnitude of the k_1 term in 8-methylquinoline-borane.

These studies provide insight regarding the effects of substituents on the stability of heteroaromatic amine-boranes in protic media. Recognition of these factors is essential to extending the potential synthetic utility of the amine-borane moiety as a convenient protecting group for tertiary nitrogens.²

Acknowledgment. Support of The Robert A. Welch Foundation (Grant P-162) and the TCU Research Fund is gratefully acknowledged.

Registry No. Quinoline-N-borane, 13240-36-3; 2-methylquinoline-N-borane, 92367-41-4; 3-methylquinoline-N-borane, 54304-40-4; 4methylquinoline-N-borane, 94553-41-0; 6-methylquinoline-N-borane, 102941-75-3; 8-methylquinoline-N-borane, 54304-36-8; 3-bromoquinoline-N-borane, 102941-76-4; 4-chloroquinoline-N-borane, 102941-77-5; 6-methoxyquinoline-N-borane, 102941-78-6; 6-nitroquinoline-N-borane, 102941-79-7; isoquinoline-N-borane, 54304-37-9.

Contribution from the Max-Planck-Institut für Strahlenchemie and Max-Planck-Institut für Kohlenforschung, D-4330 Mülheim a. d. Ruhr, West Germany, Institut für Theoretische Chemie, Universität Düsseldorf, D-4000 Düsseldorf, West Germany, and Faculty of Science, Rikkyo University, Nishiikebukuru 3, Toshima-ku, Tokyo 171, Japan

Vibrational Fine Structure of the Lowest Spin-Allowed Absorption Band of trans - $[Co(CN)_2(tn)_2]^+$ (tn = 1,3-Propanediamine). Structures of trans-[Co(CN)₂(tn)₂]Cl·H₂O and trans-[Co(CN)₂(tn)₂]Cl·3H₂O

Hans Kupka,*[†] Joachim Degen,[†] Akio Urushiyama,[§] Klaus Angermund,^{||} and Carl Krüger^{||}

Received December 5, 1985

The results of X-ray structure analyses of trans-[Co(CN)2(tn)2]Cl·H2O and trans-[Co(CN)2(tn)2]Cl·3H2O are presented. In these crystal lattice systems the cationic complex exists in two forms. In the trihydrate crystal both six-membered metal chelate rings of the complex ion trans- $[Co(CN)_2(tn)_2]^+$ assume the chair form, while in the monohydrate crystal one is present in the chair and the other one in the skew-boat form. This change in geometry of the complex ion is made manifest by high-resolution, polarized absorption spectroscopy. This shows that the spectrum of the monohydrate yields much less information in the region of the lowest spin-allowed transition ${}^{1}A(C_{1})[{}^{1}A_{2g}(D_{4h})] \leftarrow {}^{1}A$ than does the spectrum of the ${}^{1}B_{g}(C_{2h})[{}^{1}A_{2g}(D_{4h})] \leftarrow {}^{1}A_{g}$ transition in the trihydrate crystal. Analysis of the vibronic structure in these spectral regions, supported by the results of a normal-coordinate analysis, shows that the complex ion undergoes a distortion in its electronic excited state ${}^{1}B_{g}$ (trihydrate) and ${}^{1}A$ (monohydrate). This results in a flattening of the chelate rings in the equatorial direction, as well as a contraction along the vertical axis containing the cyanide ligands. This flattening produces an expansion of ~0.06 Å in the Co-N bond lengths. Support for the experimentally determined excited-state distortion is provided by MO calculations of the forces exerted in the excited state of trans-[Co(CN)₂(tn)₂]⁺.

I. Introduction

In previous studies,^{1,2} we had estimated the distortion of trans- $[Co(CN)_2(NH_3)_4]^+$ and trans- $[Co(CN)_2(en)_2]^+$ in their ligand field excited states ${}^{1}A_{2g}(D_{4h})$ and ${}^{1}B_{g}(C_{2h})[{}^{1}A_{2g}(D_{4h})]$, respectively. This was done through analysis of the vibrational fine structure and the intensity distribution of the single-crystal absorption bands combined with a normal-coordinate analysis of the distorting (accepting) modes of the chromophores. It was found that the *trans*- $[Co(CN)_2(en)_2]^+$ complex undergoes dis-

⁽²³⁾ Elderfield, R. C.; Siegel, M. J. Am. Chem. Soc. 1951, 73, 5622-5628.
(24) McGary, C. W., Jr.; Okamoto, Y.; Brown, H. C. J. Am. Chem. Soc. 1955, 77, 3037-3043.

⁽²⁵⁾ Okamoto, Y.; Brown, H. C. J. Org. Chem. 1957, 22, 485-494.
(26) Brown, H. C.; Okamoto, Y. J. Am. Chem. Soc. 1958, 80, 4979-4987.
(27) Jaffe, H. H. Chem. Rev. 1953, 53, 191-261.

[†] Max-Planck-Institut für Strahlenchemie.

^tUniversität Düsseldorf.

[§]Rikkyo University.

^I Max-Planck-Institut für Kohlenforschung.

⁽¹⁾ Urushiyama, A.; Kupka, H.; Degen J.; Schmidtke, H.-H. Chem. Phys. 1982, 67, 65

Hakamata, K.; Urushiyama, A.; Degen, J.; Kupka, H.; Schmidtke, H.-H. Inorg. Chem. 1983, 22, 3519 and references cited therein. (2)